Multisymplectic variational integrators and space/time symplecticity
نویسندگان
چکیده
منابع مشابه
Multisymplectic variational integrators and space/time symplecticity
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...
متن کاملMultisymplectic Geometry, Variational Integrators, and Nonlinear PDEs
This paper presents a geometric-variational approach to continuous and discrete mechanics and field theories. Using multisymplectic geometry, we show that the existence of the fundamental geometric structures as well as their preservation along solutions can be obtained directly from the variational principle. In particular, we prove that a unique multisymplectic structure is obtained by taking...
متن کاملNonstandard Finite Difference Variational Integrators for Multisymplectic PDEs
We use the idea of nonstandard finite difference methods to derive the discrete variational integrators for multisymplectic PDEs. We obtain a nonstandard finite difference variational integrator for linear wave equation with a triangle discretization and two nonstandard finite difference variational integrators for the nonlinear Klein-Gordon equation with a triangle discretization and a square ...
متن کاملConservation properties of multisymplectic integrators
Recent results on the local and global properties of multisymplectic discretizations of Hamiltonian PDEs are discussed. We consider multisymplectic (MS) schemes based on Fourier spectral approximations and show that, in addition to a MS conservation law, conservation laws related to linear symmetries of the PDE are preserved exactly. We compare spectral integrators (MS vs. non-symplectic) for t...
متن کاملVariational Integrators
V sequence fxkg. Similar result is also true for quasiNewton methods with trust region (see [16]). Another type of special quasi-Newton methods is that the quasi-Newton matrices are sparse. It is quite often that large-scale problems have separable structure, which leads to special structure of the Hessian matrices. In such cases we can require the quasiNewton matrices to have similar structures.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Analysis and Applications
سال: 2016
ISSN: 0219-5305,1793-6861
DOI: 10.1142/s0219530515500025